Métodos Matemáticos de Bioingeniería Grado en Ingeniería Biomédica Lecture 3

Marius A. Marinescu

Departamento de Teoría de la Señal y Comunicaciones
Área de Estadística e Investigación Operativa
Universidad Rey Juan Carlos

1 de marzo de 2021
(1) Equations for Planes and Distance Problems

- Equations for Planes
- Parametric Equation of the Plane
- Distance Problems

Equations for Planes

Planes in \mathbb{R}^{3}

- A plane Π in \mathbb{R}^{3} is determined uniquely by the following geometric information:
- A particular point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ in the plane.
- A particular vector $\mathbf{n}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ that is normal (perpendicular) to the plane.

Π is the set of all points $P(x, y, z)$ in space such that $\overrightarrow{P_{0} P}$ is perpendicular to \mathbf{n}

Planes in \mathbb{R}^{3}

- Π is defined by the vector equation

$$
\mathbf{n} \cdot \overrightarrow{P_{0} P}=0
$$

Equations for Planes

Planes in \mathbb{R}^{3}

- Since $\overrightarrow{P_{0} P}=\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k}$ equation may be rewritten

$$
(A \mathbf{i}+B \mathbf{j}+C \mathbf{k}) \cdot\left(\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k}\right)=0
$$

Or

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

Planes in \mathbb{R}^{3}

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

- This is equivalent to

$$
A x+B y+C z=D
$$

where $D=A x_{0}+B y_{0}+C z_{0}$

For an arbitrary dimension n it is analogously defined. In the general case it is cold a hyperplane. For the case $n=2$ which geometric object is the hyperplane?

Example 1

- The plane through the point $(3,2,1)$ with normal vector $2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$ has equation:

$$
\begin{aligned}
& (2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}) \cdot((x-3) \mathbf{i}+(y-2) \mathbf{j}+(z-1) \mathbf{k})=0 \Longleftrightarrow \\
& \Longleftrightarrow 2(x-3)-(y-2)+4(z-1)=0 \Longleftrightarrow 2 x-y+4 z=8
\end{aligned}
$$

Example 2

Given the plane with equation

$$
7 x+2 y-3 z=1
$$

find a normal vector to the plane and identify three points that lie on that plane.

- A possible normal vector is $\mathbf{n}=7 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$.
- However, any nonzero scalar multiple of \mathbf{n} will work as well.
- Algebraically, the effect of using a scalar multiple of \mathbf{n} as normal is to multiply by such a scalar the equation.

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

- Finding three points in the plane is not difficult. How can we find it?

From high school geometry, you may recall that

> A plane is determined by three (noncollinear) points

Example 4

Find an equation of the plane that contains the points
$P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$.

Two different approaches

- There are two ways to solve this problem
- The first approach is algebraic and rather uninspired.
- The second method of solution is cleaner and more geometric.

Example 4

> A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points
$P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$.

First approach

- Any plane must have an equation of the form

$$
A x+B y+C z=D
$$

for suitable constants A, B, C, and D.

- Thus, we need only to substitute the coordinates of P_{0}, P_{1}, and P_{2} into this equation and solve for A, B, C, and D.

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

First approach

$$
A x+B y+C z=D
$$

- Substitution of P_{0} gives $A+2 B=D$
- Substitution of P_{1} gives $3 A+B+2 C=D$
- Substitution of P_{2} gives $B+C=D$

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points
$P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

First approach

- Hence, we must solve a system of 3 equations in 4 unknowns

$$
\left\{\begin{array}{l}
A+2 B=D \\
3 A+B+2 C=D \\
B+C=D
\end{array}\right.
$$

- In general, such a system has either no solution or else infinitely many solutions.

Example 4

A plane is determined by three (noncollinear) points
Find an equation of the plane that contains the points
$P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

First approach

- Hence, we must solve a system of 3 equations in 4 unknowns

$$
\left\{\begin{array}{l}
A+2 B=D \\
3 A+B+2 C=D \\
B+C=D
\end{array}\right.
$$

- We must be in the latter case, since we know that the three points P_{0}, P_{1}, and P_{2} lie on some plane: Some set of constants A, B, C, and D must exist.

Example 4

> A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points
$P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

First approach

- We can choose a value for one of A, B, C, or D, and then the other values will be determined.

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points
$P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

First approach

$$
\left\{\begin{array}{l}
A=-\frac{1}{7} D \\
7 C=3 D \\
B=\frac{4}{7} D
\end{array}\right.
$$

- Thus, if in we take $D=-7$ (for example), then $A=1, B=-4, C=-3$, and the equation of the plane is

$$
x-4 y-3 z=-7
$$

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points
$P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

Second approach

- The idea is to make use of equation

$$
\mathbf{n} \cdot \overrightarrow{P_{0} P}=0
$$

- Therefore, we need to know
(1) The coordinates of a particular point on the plane (no problem, we are given three such points).
(2) A vector \mathbf{n} normal to the plane.

Example 4

> A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

Second approach

- The vectors $\overrightarrow{P_{0} P_{1}}$ and $\overrightarrow{P_{0} P_{2}}$ both lie in the plane

Example 4

> A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

Second approach

- In particular, the normal vector \mathbf{n} must be perpendicular to both $\overrightarrow{P_{0} P_{1}}$ and $\overrightarrow{P_{0} P_{2}}$

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points
$P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

Second approach

- Consequently, the cross product $\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{2}}$ provides just what we need

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points
$P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

Second approach

$$
=\mathbf{i}-4 \mathbf{j}-3 \mathbf{k}
$$

Example 4

> A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points
$P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

Second approach

- We take $P_{0}(1,2,0)$ to be the particular point in equation

$$
\mathbf{n} \cdot \overrightarrow{P_{0} P}=0
$$

Example 4

A plane is determined by three (noncollinear) points
Find an equation of the plane that contains the points $P_{0}(1,2,0), P_{1}(3,1,2)$, and $P_{2}(0,1,1)$

Second approach

$$
(\mathbf{i}-4 \mathbf{j}-3 \mathbf{k}) \cdot((x-1) \mathbf{i}+(y-2) \mathbf{j}+z \mathbf{k})=0
$$

or

$$
(x-1)-4(y-2)-3 z=0
$$

Example 5

- Consider the two planes having equations

$$
x-2 y+z=4 \text { and } 2 x+y+3 z=-7
$$

- Determine a set of parametric equations for their line of intersection

Example 5

- We use Proposition 2.1

$$
\mathbf{r}(t)=\mathbf{b}+t \mathbf{a}
$$

- Thus, we need to find
- A point on the line, and
- A vector parallel to the line

Example 5

- First, we find the coordinates (x, y, z) of a point on the line
- This coordinates must satisfy the system of simultaneous equations given by the two planes

$$
\left\{\begin{array}{l}
x-2 y+z=4 \\
2 x+y+3 z=-7
\end{array}\right.
$$

Example 5

- From the equations it is not too difficult to produce a single solution (x, y, z)
- For example, if we let $z=0$ we obtain the simpler system

$$
\left\{\begin{array}{l}
x-2 y=4 \\
2 x+y=-7
\end{array}\right.
$$

Example 5

$$
\left\{\begin{array}{l}
x-2 y=4 \\
2 x+y=-7
\end{array}\right.
$$

- The solution to the system of equations is readily calculated to be:

$$
x=-2, y=-3
$$

- Thus, $(-2,-3,0)$ are the coordinates of a point on the line.

Example 5

- Second, we find a vector parallel to the line of intersection
- Note that such a vector must be perpendicular to the two normal vectors to the planes (since the line is inside of both planes).
- The normal vectors to the planes are

$$
\mathbf{i}-2 \mathbf{j}+\mathbf{k} \text { and } 2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}
$$

- A vector parallel to the line of intersection is given by

$$
(\mathbf{i}-2 \mathbf{j}+\mathbf{k}) \times(2 \mathbf{i}+\mathbf{j}+3 \mathbf{k})=-7 \mathbf{i}-\mathbf{j}+5 \mathbf{k}
$$

Example 5

- Hence, Proposition 2.1 implies that a vector parametric equation for the line is

$$
\mathbf{r}(t)=(-2 \mathbf{i}-3 \mathbf{j})+t(-7 \mathbf{i}-\mathbf{j}+5 \mathbf{k})
$$

- And a standard set of parametric equations is

$$
\left\{\begin{array}{l}
x=-7 t-2 \\
y=-t-3 \\
z=5 t
\end{array}\right.
$$

(1) Equations for Planes and Distance Problems

- Equations for Planes
- Parametric Equation of the Plane
- Distance Problems

Parametric Equations of Planes Through the Origin in \mathbb{R}^{3}

- Suppose that $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ are two nonzero, nonparallel vectors in \mathbb{R}^{3}.
- Then, a and \mathbf{b} determine a plane in \mathbb{R}^{3} that passes through the origin.

Parametric Equations of Planes Through the Origin in \mathbb{R}^{3}

- To find the coordinates of a point $P(x, y, z)$ in this plane, draw a parallelogram, i.e., that is a linear combination of the vectors \mathbf{a} and \mathbf{b}.
- So there exist scalars s and t such that the position vector of P is

$$
\overrightarrow{O P}=s \mathbf{a}+t \mathbf{b}
$$

Parametric Equations of Planes Through the Origin in \mathbb{R}^{3}

- The plane may be described as

$$
\Pi_{0} \equiv\left\{\mathbf{x} \in \mathbb{R}^{3} \mid \mathbf{x}=s \mathbf{a}+t \mathbf{b} ; s, t \in \mathbb{R}\right\}
$$

General Parametric Equations of Planes in \mathbb{R}^{3}

- Now, we seek to describe a general plane Π not necessarily passing through the origin.
- Let $\mathbf{c}=\left(c_{1}, c_{2}, c_{3}\right)=\overrightarrow{O P_{0}}$ denote the position vector of a particular point P_{0} in Π.
- Let \mathbf{a} and \mathbf{b} be two (nonzero, nonparallel) vectors that determine the plane through the origin Π_{0} parallel to Π.

General Parametric Equations of Planes in \mathbb{R}^{3}

- We parallel translate \mathbf{a} and \mathbf{b} so that their tails are at the head of \mathbf{c}

- The position vector of any point $P(x, y, z)$ in Π may be described as

$$
\overrightarrow{O P}=s \mathbf{a}+t \mathbf{b}+\mathbf{c}
$$

Proposition 5.1

$$
\mathbf{x}(s, t)=s \mathbf{a}+t \mathbf{b}+\mathbf{c}
$$

- By taking components in formula, we readily obtain a set of parametric equations for Π :

$$
\Pi \equiv\left\{\begin{array}{l}
x=s a_{1}+t b_{1}+c_{1} \\
y=s a_{2}+t b_{2}+c_{2} \\
z=s a_{3}+t b_{3}+c_{3}
\end{array} \quad t, s \in \mathbb{R}\right.
$$

Parametric Lines vs Parametric planes

- We need to use one parameters t to describe a line

$$
\Lambda \equiv\left\{\begin{array}{l}
x=a_{1} t+b_{1} \\
y=a_{2} t+b_{2} \quad t \in \mathbb{R} \\
z=a_{3} t+b_{3}
\end{array}\right.
$$

A line is a one-dimensional object

- We need to use two parameters s and t to describe a plane

$$
\Pi \equiv\left\{\begin{array}{l}
x=s a_{1}+t b_{1}+c_{1} \\
y=s a_{2}+t b_{2}+c_{2} \\
z=s a_{3}+t b_{3}+c_{3}
\end{array} \quad t, s \in \mathbb{R}\right.
$$

A plane is a two-dimensional object

Example 6

Find Π a set of parametric equations for the plane that passes through the point $(1,0,-1)$ and is parallel to the vectors $3 \mathbf{i}-\mathbf{k}$ and $2 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}$

$$
\mathbf{x}(s, t)=s \mathbf{a}+t \mathbf{b}+\mathbf{c}
$$

- From formula, any point on the plane is specified by

$$
\begin{aligned}
\mathbf{x}(s, t) & =s(3 \mathbf{i}-\mathbf{k})+t(2 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k})+(\mathbf{i}-\mathbf{k}) \\
& =(3 s+2 t+1) \mathbf{i}+5 t \mathbf{j}+(2 t-s-1) \mathbf{k}
\end{aligned}
$$

- The individual parametric equation may be read off as

$$
\left\{\begin{array}{l}
x=3 s+2 t+1 \\
y=5 t \\
z=2 t-s-1
\end{array} \quad t, s \in \mathbb{R}\right.
$$

(1) Equations for Planes and Distance Problems

- Equations for Planes
- Parametric Equation of the Plane
- Distance Problems

Example 7. Distance between a point and a line

Find the distance between the point $P_{0}(2,1,3)$ and the line $\mathbf{I}(t)=t(-1,1,-2)+(2,3,-2)$ in two ways

Method 1

- From the vector parametric equations for the line, we read off
- A point B on the line, namely, $B=(2,3,-2)$, and
- A vector a parallel to the line, namely, $\mathbf{a}=(-1,1,-2)$

Example 7. Distance between a point and a line

Find the distance between the point $P_{0}(2,1,3)$ and the line $\mathbf{I}(t)=t(-1,1,-2)+(2,3,-2)$ in two ways

Method 1

- The desired distance between P_{0} and the line is provided by the length of the vector

$$
\overrightarrow{B P_{0}}-\operatorname{proj}_{\mathrm{a}} \overrightarrow{B P_{0}}
$$

Example 7. Distance between a point and a line

Find the distance between the point $P_{0}(2,1,3)$ and the line $\mathbf{I}(t)=t(-1,1,-2)+(2,3,-2)$ in two ways

Method 1

$$
\begin{aligned}
\overrightarrow{B P_{0}} & =(2,1,3)-(2,3,-2)=(0,-2,5) \\
\operatorname{proj}_{\mathbf{a}} \overrightarrow{B P_{0}} & =\left(\frac{\mathbf{a} \cdot \overrightarrow{B P_{0}}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}=\left(\frac{(-1,1,-2) \cdot(0,-2,5)}{(-1,1,-2) \cdot(-1,1,-2)}\right)(-1,1,-2) \\
& =(2,-2,4)
\end{aligned}
$$

Example 7. Distance between a point and a line

Find the distance between the point $P_{0}(2,1,3)$ and the line $\mathbf{I}(t)=t(-1,1,-2)+(2,3,-2)$ in two ways

Method 1

$$
\begin{aligned}
\overrightarrow{B P_{0}} & =(0,-2,5) \\
\operatorname{proj}_{\mathbf{a}} \overrightarrow{B P_{0}} & =(2,-2,4)
\end{aligned}
$$

- The desired distance is

$$
\begin{aligned}
\left\|\overrightarrow{B P_{0}}-\operatorname{proj}_{a} \overrightarrow{B P_{0}}\right\| & =\|(0,-2,5)-(2,-2,4)\| \\
& =\|(-2,0,1)\|=\sqrt{5}
\end{aligned}
$$

Example 7. Distance between a point and a line

Find the distance between the point $P_{0}(2,1,3)$ and the line $\mathbf{I}(t)=t(-1,1,-2)+(2,3,-2)$ in two ways

Method 2

- In this case, we use a little trigonometry

Example 7. Distance between a point and a line

Find the distance between the point $P_{0}(2,1,3)$ and the line $\mathbf{I}(t)=t(-1,1,-2)+(2,3,-2)$ in two ways

Method 2

- If θ denotes the angle between the vectors a and $\overrightarrow{B P_{0}}$

$$
\sin \theta=\frac{D}{\left\|\overrightarrow{B P_{0}}\right\|}
$$

where D denotes the distance between P_{0} and the line

Example 7. Distance between a point and a line

Find the distance between the point $P_{0}(2,1,3)$ and the line $\mathbf{I}(t)=t(-1,1,-2)+(2,3,-2)$ in two ways

Method 2

- Hence

$$
D=\left\|\overrightarrow{B P_{0}}\right\| \sin \theta=\frac{\|\mathbf{a}\|\left\|\overrightarrow{B P_{0}}\right\| \sin \theta}{\|\mathbf{a}\|}=\frac{\left\|\mathbf{a} \times \overrightarrow{B P_{0}}\right\|}{\|\mathbf{a}\|}
$$

Example 7. Distance between a point and a line

Find the distance between the point $P_{0}(2,1,3)$ and the line $\mathbf{I}(t)=t(-1,1,-2)+(2,3,-2)$ in two ways

Method 2

- Therefore, we calculate

$$
\mathbf{a} \times \overrightarrow{B P_{0}}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 1 & -2 \\
0 & -2 & 5
\end{array}\right|=\mathbf{i}+5 \mathbf{j}+2 \mathbf{k}
$$

Example 7. Distance between a point and a line

Find the distance between the point $P_{0}(2,1,3)$ and the line $\mathbf{I}(t)=t(-1,1,-2)+(2,3,-2)$ in two ways

Method 2

- So that the distance sought is

$$
D=\frac{\left\|\mathbf{a} \times \overrightarrow{B P_{0}}\right\|}{\|a\|}=\frac{\|\mathbf{i}+5 \mathbf{j}+2 \mathbf{k}\|}{\|-\mathbf{i}+\mathbf{j}-2 \mathbf{k}\|}=\frac{\sqrt{30}}{\sqrt{6}}=\sqrt{5}
$$

Example 8. Distance between parallel planes

Compute the distance between the parallel planes

$$
\Pi_{1}: 2 x-2 y+z=5 \quad \text { and } \quad \Pi_{2}: 2 x-2 y+z=20
$$

- The desired distance D is given by $\left\|\operatorname{proj}_{\mathbf{n}} \overrightarrow{P_{1} P_{2}}\right\|$ where
- P_{1} is a point on Π_{1}
- P_{2} is a point on Π_{2}, and
- \mathbf{n} is a vector normal to both planes

Example 8. Distance between parallel planes

Compute the distance between the parallel planes

$$
\Pi_{1}: 2 x-2 y+z=5 \quad \text { and } \quad \Pi_{2}: 2 x-2 y+z=20
$$

- The vector \mathbf{n} that is normal to both planes may be read directly from the equation for either Π_{1} or Π_{2} as

$$
\mathbf{n}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}
$$

Example 8. Distance between parallel planes

Compute the distance between the parallel planes

$$
\Pi_{1}: 2 x-2 y+z=5 \quad \text { and } \quad \Pi_{2}: 2 x-2 y+z=20
$$

- It is not hard to find a point P_{1} on Π_{1}, for instance, the point $P_{1}=(0,0,5)$
- Similarly, take $P_{2}=(0,0,20)$ for a point on Π_{2}
- Then

$$
\overrightarrow{P_{1} P_{2}}=(0,0,15)
$$

Example 8. Distance between parallel planes

Compute the distance between the parallel planes

$$
\Pi_{1}: 2 x-2 y+z=5 \quad \text { and } \quad \Pi_{2}: 2 x-2 y+z=20
$$

$$
\begin{aligned}
\overrightarrow{P_{1} P_{2}} & =(0,0,15) \text { and } \mathbf{n}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k} \\
\operatorname{proj}_{\mathbf{n}} \overrightarrow{P_{1} P_{2}} & =\left(\frac{\mathbf{n} \cdot \overrightarrow{P_{1} P_{2}}}{\mathbf{n} \cdot \mathbf{n}}\right) \mathbf{n}=\left(\frac{(2,-2,-1) \cdot(0,0,15)}{(2,-2,1) \cdot(2,-2,1)}\right)(2,-2,1) \\
& =-\frac{15}{9}(2,-2,1)=-\frac{5}{3}(2,-2,1)
\end{aligned}
$$

Example 8. Distance between parallel planes

Compute the distance between the parallel planes

$$
\Pi_{1}: 2 x-2 y+z=5 \quad \text { and } \quad \Pi_{2}: 2 x-2 y+z=20
$$

$$
\operatorname{proj}_{\mathbf{n}} \overrightarrow{P_{1} P_{2}}=-\frac{5}{3}(2,-2,1)
$$

- Hence, the distance D that we seek is

$$
D=\left\|\operatorname{proj}_{\mathbf{n}} \overrightarrow{P_{1} P_{2}}\right\|=\frac{5}{3} \sqrt{9}=5
$$

Example 9. Distance between two skew lines

> Two lines in \mathbb{R}^{3} are said to be skew if they are neither intersecting nor parallel

- The lines must lie in parallel planes, and
- The distance between the lines is equal to the distance between the planes

Find the distance between the two skew lines

$$
\mathbf{I}_{1}(t)=t(2,1,3)+(0,5,-1) \quad \text { and } \quad \mathbf{I}_{2}(t)=t(1,-1,0)+(-1,2,0)
$$

Example 9. Distance between two skew lines

Find the distance between the two skew lines

$$
\mathbf{I}_{1}(t)=t(2,1,3)+(0,5,-1) \quad \text { and } \quad \mathbf{I}_{2}(t)=t(1,-1,0)+(-1,2,0)
$$

- We need to find the length of the projection of the vector between a point on each line onto a vector \mathbf{n} that is
- Perpendicular to both lines, and
- Perpendicular to the parallel planes that contain the lines

$$
\left\|\operatorname{proj}_{\mathbf{n}} \overrightarrow{B_{1} B_{2}}\right\|
$$

Example 9. Distance between two skew lines

Find the distance between the two skew lines

$$
\mathbf{I}_{1}(t)=t(2,1,3)+(0,5,-1) \quad \text { and } \quad \mathbf{I}_{2}(t)=t(1,-1,0)+(-1,2,0)
$$

- From the vector parametric equations for the lines
- Point $B_{1}(0,5,-1)$ is on the first line, and
- Point $B_{2}(-1,2,0)$ is on the second line
- Hence

$$
\overrightarrow{B_{1} B_{2}}=(-1,2,0)-(0,5,-1)=(-1,-3,1)
$$

Example 9. Distance between two skew lines

Find the distance between the two skew lines

$$
\mathbf{I}_{1}(t)=t(2,1,3)+(0,5,-1) \quad \text { and } \quad \mathbf{I}_{2}(t)=t(1,-1,0)+(-1,2,0)
$$

- For a vector \mathbf{n} that is perpendicular to both lines, we may use

$$
\mathbf{n}=\mathbf{a}_{1} \times \mathbf{a}_{2}
$$

- $\mathbf{a}_{1}=(2,1,3)$ is a vector parallel to the first line, and
- $\mathbf{a}_{2}=(1,-1,0)$ is a vector parallel to the second line

Example 9. Distance between two skew lines

Find the distance between the two skew lines

$$
\mathbf{I}_{1}(t)=t(2,1,3)+(0,5,-1) \quad \text { and } \quad \mathbf{I}_{2}(t)=t(1,-1,0)+(-1,2,0)
$$

- $\mathbf{n}=\mathbf{a}_{1} \times \mathbf{a}_{2}$
- $\mathbf{a}_{1}=(2,1,3)$ is a vector parallel to the first line, and
- $\mathbf{a}_{2}=(1,-1,0)$ is parallel to the second line

$$
\mathbf{n}=\mathbf{a}_{1} \times \mathbf{a}_{2}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right|=3 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k}
$$

Example 9. Distance between two skew lines

Find the distance between the two skew lines
$\mathbf{I}_{1}(t)=t(2,1,3)+(0,5,-1) \quad$ and $\quad \mathbf{I}_{2}(t)=t(1,-1,0)+(-1,2,0)$

$$
\begin{gathered}
\mathbf{n}=3 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k} \text { and } \overrightarrow{B_{1} B_{2}}=(-1,-3,1) \\
\operatorname{proj}_{\mathbf{n}} \overrightarrow{B_{1} B_{2}}=\left(\frac{\mathbf{n} \cdot \overrightarrow{B_{1} B_{2}}}{\mathbf{n} \cdot \mathbf{n}}\right) \mathbf{n}=\left(\frac{(-1,-3,1) \cdot(3,3,-3)}{(3,3,-3) \cdot(3,3,-3)}\right)(3,3,-3) \\
= \\
-\frac{15}{27}(3,3,-3)=-\frac{5}{3}(1,1,-1)
\end{gathered}
$$

Example 9. Distance between two skew lines

Find the distance between the two skew lines

$$
\mathbf{I}_{1}(t)=t(2,1,3)+(0,5,-1) \quad \text { and } \quad \mathbf{I}_{2}(t)=t(1,-1,0)+(-1,2,0)
$$

- The desired distance is

$$
\left\|\operatorname{proj}_{\mathbf{n}} \overrightarrow{B_{1} B_{2}}\right\|=\frac{5}{3} \sqrt{3}
$$

