Métodos Matemáticos de Bioingeniería

Grado en Ingeniería Biomédica Lecture 3

Marius A. Marinescu

Departamento de Teoría de la Señal y Comunicaciones Área de Estadística e Investigación Operativa Universidad Rey Juan Carlos

1 de marzo de 2021

Equations for Planes

1 Equations for Planes and Distance Problems

- Equations for Planes
- Parametric Equation of the Plane
- Distance Problems

Equations for Planes

Planes in \mathbb{R}^3

- A plane Π in \mathbb{R}^3 is determined uniquely by the following geometric information:
 - A particular point $P_0(x_0, y_0, z_0)$ in the plane.
 - A particular vector n = Ai + Bj + Ck that is normal (perpendicular) to the plane.

$\Pi \text{ is the set of all points } P(x, y, z) \text{ in space}$ such that $\overrightarrow{P_0P}$ is perpendicular to **n**

Equations for Planes

• Π is defined by the vector equation

$$\mathbf{n}\cdot\overrightarrow{P_0P}=0$$

Equations for Planes

Planes in \mathbb{R}^3

• Since $\overrightarrow{P_0P} = (x - x_0)\mathbf{i} + (y - y_0)\mathbf{j} + (z - z_0)\mathbf{k}$ equation may be rewritten

$$(A\mathbf{i} + B\mathbf{j} + C\mathbf{k}) \cdot ((x - x_0)\mathbf{i} + (y - y_0)\mathbf{j} + (z - z_0)\mathbf{k}) = 0$$

or

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

Equations for Planes

Planes in \mathbb{R}^3

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

• This is equivalent to

$$Ax + By + Cz = D$$

where $D = Ax_0 + By_0 + Cz_0$

Equations for Planes

For an arbitrary dimension n it is analogously defined. In the general case it is cold a **hyperplane**. For the case n = 2 which geometric object is the hyperplane?

Example 1

• The plane through the point (3, 2, 1) with normal vector $2\mathbf{i} - \mathbf{j} + 4\mathbf{k}$ has equation:

$$(2\mathbf{i} - \mathbf{j} + 4\mathbf{k}) \cdot ((x - 3)\mathbf{i} + (y - 2)\mathbf{j} + (z - 1)\mathbf{k}) = 0 \iff$$
$$\iff 2(x - 3) - (y - 2) + 4(z - 1) = 0 \iff 2x - y + 4z = 8$$

Equations for Planes

Example 2

Given the plane with equation

$$7x + 2y - 3z = 1$$

find a normal vector to the plane and identify three points that lie on that plane.

- A possible normal vector is $\mathbf{n} = 7\mathbf{i} + 2\mathbf{j} 3\mathbf{k}$.
- However, any nonzero scalar multiple of **n** will work as well.
- Algebraically, the effect of using a scalar multiple of **n** as normal is to multiply by such a scalar the equation.

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

• Finding three points in the plane is not difficult. How can we find it?

Equations for Planes

From high school geometry, you may recall that

A plane is determined by three (noncollinear) points

Example 4

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$.

Two different approaches

- There are two ways to solve this problem
- The first approach is algebraic and rather uninspired.
- The second method of solution is cleaner and more geometric.

Equations for Planes

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$.

First approach

• Any plane must have an equation of the form

$$Ax + By + Cz = D$$

for suitable constants A, B, C, and D.

 Thus, we need only to substitute the coordinates of P₀, P₁, and P₂ into this equation and solve for A, B, C, and D.

Equations for Planes

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

First approach

Ax + By + Cz = D

- Substitution of P_0 gives A + 2B = D
- Substitution of P_1 gives 3A + B + 2C = D
- Substitution of P_2 gives B + C = D

Equations for Planes

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

First approach

• Hence, we must solve a system of 3 equations in 4 unknowns

$$\begin{cases} A + 2B = D \\ 3A + B + 2C = D \\ B + C = D \end{cases}$$

• In general, such a system has either no solution or else infinitely many solutions.

Equations for Planes

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

First approach

• Hence, we must solve a system of 3 equations in 4 unknowns

$$\begin{cases} A + 2B = D\\ 3A + B + 2C = D\\ B + C = D \end{cases}$$

• We must be in the latter case, since we know that the three points P_0, P_1 , and P_2 lie on some plane:

Some set of constants A, B, C, and D must exist.

Equations for Planes

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

First approach

• We can choose a value for one of *A*, *B*, *C*, or *D*, and then the other values will be determined.

Equations for Planes

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

First approach

$$\begin{cases} A = -\frac{1}{7}D\\ 7C = 3D\\ B = \frac{4}{7}D \end{cases}$$

• Thus, if in we take D = -7 (for example), then A = 1, B = -4, C = -3, and the equation of the plane is

$$x - 4y - 3z = -7$$

Equations for Planes

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

Second approach

• The idea is to make use of equation

$$\mathbf{n}\cdot\overrightarrow{P_0P}=0$$

- Therefore, we need to know
 - The coordinates of a particular point on the plane (no problem, we are given three such points).
 - **2** A vector \mathbf{n} normal to the plane.

Equations for Planes

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

Second approach

• The vectors $\overrightarrow{P_0P_1}$ and $\overrightarrow{P_0P_2}$ both lie in the plane

Equations for Planes

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

Second approach

• In particular, the normal vector **n** must be perpendicular to both $\overrightarrow{P_0P_1}$ and $\overrightarrow{P_0P_2}$

Equations for Planes

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

Second approach

Equations for Planes

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

Equations for Planes

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

Second approach

• We take $P_0(1,2,0)$ to be the particular point in equation

$$\mathbf{n}\cdot\overrightarrow{P_0P}=0$$

Equations for Planes

or

Example 4

A plane is determined by three (noncollinear) points

Find an equation of the plane that contains the points $P_0(1,2,0), P_1(3,1,2)$, and $P_2(0,1,1)$

Second approach

$$(\mathbf{i} - 4\mathbf{j} - 3\mathbf{k}) \cdot ((x - 1)\mathbf{i} + (y - 2)\mathbf{j} + z\mathbf{k}) = 0$$
$$(x - 1) - 4(y - 2) - 3z = 0$$

Equations for Planes

Example 5

• Consider the two planes having equations

x - 2y + z = 4 and 2x + y + 3z = -7

• Determine a set of parametric equations for their line of intersection

Equations for Planes

Example 5

• We use Proposition 2.1

$$\mathbf{r}(t) = \mathbf{b} + t\mathbf{a}$$

• Thus, we need to find

- A point on the line, and
- A vector parallel to the line

Equations for Planes

- First, we find the coordinates (x, y, z) of a point on the line
- This coordinates must satisfy the system of simultaneous equations given by the two planes

$$\begin{cases} x - 2y + z = 4\\ 2x + y + 3z = -7 \end{cases}$$

Equations for Planes

- From the equations it is not too difficult to produce a single solution (x, y, z)
- For example, if we let z = 0 we obtain the simpler system

$$\begin{cases} x - 2y = 4\\ 2x + y = -7 \end{cases}$$

Equations for Planes

 The solution to the system of equations is readily calculated to be:

$$x = -2, y = -3$$

• Thus, (-2, -3, 0) are the coordinates of a point on the line.

Equations for Planes

- Second, we find a vector parallel to the line of intersection
- Note that such a vector must be perpendicular to the two normal vectors to the planes (since the line is inside of both planes).
- The normal vectors to the planes are

$$\mathbf{i} - 2\mathbf{j} + \mathbf{k}$$
 and $2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$

• A vector parallel to the line of intersection is given by

$$(\mathbf{i}-2\mathbf{j}+\mathbf{k})\times(2\mathbf{i}+\mathbf{j}+3\mathbf{k})=~-7\mathbf{i}-\mathbf{j}+5\mathbf{k}$$

Equations for Planes

• Hence, Proposition 2.1 implies that a vector parametric equation for the line is

$$\mathbf{r}(t) = (-2\mathbf{i} - 3\mathbf{j}) + t(-7\mathbf{i} - \mathbf{j} + 5\mathbf{k})$$

• And a standard set of parametric equations is

$$\begin{cases} x = -7t - 2\\ y = -t - 3\\ z = 5t \end{cases}$$

Parametric Equation of the Plane

1 Equations for Planes and Distance Problems

- Equations for Planes
- Parametric Equation of the Plane
- Distance Problems

Parametric Equation of the Plane

Parametric Equations of Planes Through the Origin in \mathbb{R}^3

- Suppose that $\mathbf{a} = (a_1, a_2, a_3)$ and $\mathbf{b} = (b_1, b_2, b_3)$ are two nonzero, nonparallel vectors in \mathbb{R}^3 .
- $\bullet\,$ Then, a and b determine a plane in \mathbb{R}^3 that passes through the origin.

Parametric Equation of the Plane

- To find the coordinates of a point P(x, y, z) in this plane, draw a parallelogram, i.e., that is a linear combination of the vectors a and b.
- So there exist scalars *s* and *t* such that the position vector of *P* is

$$\overrightarrow{OP} = s\mathbf{a} + t\mathbf{b}$$

Parametric Equation of the Plane

Parametric Equations of Planes Through the Origin in \mathbb{R}^3

• The plane may be described as

$$\Pi_0 \equiv \{\mathbf{x} \in \mathbb{R}^3 | \mathbf{x} = s\mathbf{a} + t\mathbf{b}; s, t \in \mathbb{R}\}$$

Parametric Equation of the Plane

General Parametric Equations of Planes in \mathbb{R}^3

- Now, we seek to describe a general plane Π not necessarily passing through the origin.
- Let $\mathbf{c} = (c_1, c_2, c_3) = \overrightarrow{OP_0}$ denote the position vector of a particular point P_0 in Π .
- Let **a** and **b** be two (nonzero, nonparallel) vectors that determine the plane through the origin Π_0 parallel to Π .

Parametric Equation of the Plane

General Parametric Equations of Planes in \mathbb{R}^3

• We parallel translate **a** and **b** so that their tails are at the head of **c**

The position vector of any point P(x, y, z) in ∏ may be described as

$$\overrightarrow{OP} = s\mathbf{a} + t\mathbf{b} + \mathbf{c}$$

Parametric Equation of the Plane

Proposition 5.1

 $\mathbf{x}(s,t) = s\mathbf{a} + t\mathbf{b} + \mathbf{c}$

 By taking components in formula, we readily obtain a set of parametric equations for Π:

$$\Pi \equiv egin{cases} x = sa_1 + tb_1 + c_1 \ y = sa_2 + tb_2 + c_2 \ z = sa_3 + tb_3 + c_3 \end{cases} t, s \in \mathbb{R}$$

Parametric Equation of the Plane

Parametric Lines vs Parametric planes

• We need to use one parameters t to describe a line

$$\Lambda \equiv \begin{cases} x = a_1 t + b_1 \\ y = a_2 t + b_2 \\ z = a_3 t + b_3 \end{cases} \quad t \in \mathbb{R}$$

A line is a one-dimensional object

• We need to use two parameters s and t to describe a plane

$$\Pi \equiv \begin{cases} x = sa_1 + tb_1 + c_1 \\ y = sa_2 + tb_2 + c_2 \\ z = sa_3 + tb_3 + c_3 \end{cases} \quad t, s \in \mathbb{R}$$

A plane is a two-dimensional object

Parametric Equation of the Plane

Example 6

Find Π a set of parametric equations for the plane that passes through the point (1,0,-1) and is parallel to the vectors $3\mathbf{i}-\mathbf{k}$ and $2\mathbf{i}+5\mathbf{j}+2\mathbf{k}$

 $\mathbf{x}(s,t) = s\mathbf{a} + t\mathbf{b} + \mathbf{c}$

• From formula, any point on the plane is specified by

$$\mathbf{x}(s,t) = s(3\mathbf{i} - \mathbf{k}) + t(2\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}) + (\mathbf{i} - \mathbf{k})$$
$$= (3s + 2t + 1)\mathbf{i} + 5t\mathbf{j} + (2t - s - 1)\mathbf{k}$$

• The individual parametric equation may be read off as

$$\begin{cases} x = 3s + 2t + 1\\ y = 5t & t, s \in \mathbb{R}\\ z = 2t - s - 1 \end{cases}$$

1 Equations for Planes and Distance Problems

- Equations for Planes
- Parametric Equation of the Plane
- Distance Problems

Example 7. Distance between a point and a line

Find the distance between the point $P_0(2,1,3)$ and the line I(t) = t(-1,1,-2) + (2,3,-2) in two ways

Method 1 P_0 \overrightarrow{BP}_0 – proj. \overrightarrow{BP}_0 • From the vector parametric equations for the line, we read off • A point B on the line, namely, B = (2, 3, -2), and • A vector **a** parallel to the line, namely, $\mathbf{a} = (-1, 1, -2)$

Distance Problems

Example 7. Distance between a point and a line

Find the distance between the point $P_0(2,1,3)$ and the line I(t) = t(-1,1,-2) + (2,3,-2) in two ways

Method 1

• The desired distance between P₀ and the line is provided by the length of the vector

$$\overrightarrow{BP_0} - \operatorname{proj}_{\mathbf{a}} \overrightarrow{BP_0}$$

Distance Problems

Example 7. Distance between a point and a line

Example 7. Distance between a point and a line

Find the distance between the point $P_0(2,1,3)$ and the line I(t) = t(-1,1,-2) + (2,3,-2) in two ways

Method 1

$$\overrightarrow{BP_0} = (0, -2, 5)$$

proj_a $\overrightarrow{BP_0} = (2, -2, 4)$

• The desired distance is

$$\begin{split} \|\overrightarrow{BP_0} - \operatorname{proj}_{\mathbf{a}} \overrightarrow{BP_0}\| &= \|(0, -2, 5) - (2, -2, 4)\| \\ &= \|(-2, 0, 1)\| = \sqrt{5} \end{split}$$

Distance Problems

Example 7. Distance between a point and a line

Find the distance between the point $P_0(2,1,3)$ and the line I(t) = t(-1,1,-2) + (2,3,-2) in two ways

Method 2

• In this case, we use a little trigonometry

Distance Problems

Example 7. Distance between a point and a line

Find the distance between the point $P_0(2,1,3)$ and the line I(t) = t(-1,1,-2) + (2,3,-2) in two ways

Method 2 • If θ denotes the angle between the vectors **a** and $\overrightarrow{BP_0}$ $\sin \theta = \frac{D}{\|\overrightarrow{BP_0}\|}$ where D denotes the distance between P_0 and the line

Distance Problems

Example 7. Distance between a point and a line

Distance Problems

Example 7. Distance between a point and a line

Distance Problems

Example 7. Distance between a point and a line

Distance Problems

Example 8. Distance between parallel planes

Compute the distance between the parallel planes

 $\Pi_1: 2x - 2y + z = 5$ and $\Pi_2: 2x - 2y + z = 20$

• The desired distance D is given by $\|\text{proj}_{\mathbf{n}}\overrightarrow{P_1P_2}\|$ where

- P_1 is a point on Π_1
- P_2 is a point on Π_2 , and
- n is a vector normal to both planes

Distance Problems

Example 8. Distance between parallel planes

Compute the distance between the parallel planes

$$\Pi_1: 2x - 2y + z = 5$$
 and $\Pi_2: 2x - 2y + z = 20$

 The vector n that is normal to both planes may be read directly from the equation for either Π₁ or Π₂ as

$$\mathbf{n} = 2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$$

Distance Problems

Example 8. Distance between parallel planes

Compute the distance between the parallel planes

$$\Pi_1: 2x - 2y + z = 5$$
 and $\Pi_2: 2x - 2y + z = 20$

- It is not hard to find a point P_1 on Π_1 , for instance, the point $P_1 = (0, 0, 5)$
- Similarly, take $P_2 = (0, 0, 20)$ for a point on Π_2
- Then

$$\overrightarrow{P_1P_2} = (0,0,15)$$

Distance Problems

Example 8. Distance between parallel planes

Compute the distance between the parallel planes

$$\Pi_1: 2x - 2y + z = 5$$
 and $\Pi_2: 2x - 2y + z = 20$

Marius A. Marinescu

Métodos Matemáticos de Bioingeniería

Distance Problems

Example 8. Distance between parallel planes

Compute the distance between the parallel planes

$$\Pi_1: 2x - 2y + z = 5$$
 and $\Pi_2: 2x - 2y + z = 20$

$$\operatorname{proj}_{\mathbf{n}}\overrightarrow{P_{1}P_{2}}=-\frac{5}{3}(2,-2,1)$$

• Hence, the distance D that we seek is

$$D = \|\operatorname{proj}_{\mathbf{n}} \overrightarrow{P_1 P_2}\| = \frac{5}{3}\sqrt{9} = 5$$

Example 9. Distance between two skew lines

Two lines in \mathbb{R}^3 are said to be **skew** if they are neither intersecting nor parallel

- The lines must lie in parallel planes, and
- The distance between the lines is equal to the distance between the planes

Find the distance between the two skew lines

$$I_1(t) = t(2,1,3) + (0,5,-1)$$
 and $I_2(t) = t(1,-1,0) + (-1,2,0)$

Distance Problems

Example 9. Distance between two skew lines

Find the distance between the two skew lines

 $I_1(t) = t(2,1,3) + (0,5,-1)$ and $I_2(t) = t(1,-1,0) + (-1,2,0)$

- We need to find the length of the projection of the vector between a point on each line onto a vector **n** that is
 - Perpendicular to both lines, and
 - Perpendicular to the parallel planes that contain the lines

$$\|\operatorname{proj}_{\mathbf{n}}\overrightarrow{B_1B_2}\|$$

Distance Problems

Example 9. Distance between two skew lines

Find the distance between the two skew lines

 $I_1(t) = t(2,1,3) + (0,5,-1)$ and $I_2(t) = t(1,-1,0) + (-1,2,0)$

- From the vector parametric equations for the lines
 - Point $B_1(0,5,-1)$ is on the first line, and
 - Point $B_2(-1,2,0)$ is on the second line
 - Hence

$$\overrightarrow{B_1B_2} = (-1,2,0) - (0,5,-1) = (-1,-3,1)$$

Example 9. Distance between two skew lines

Find the distance between the two skew lines

$$I_1(t) = t(2,1,3) + (0,5,-1)$$
 and $I_2(t) = t(1,-1,0) + (-1,2,0)$

• For a vector **n** that is perpendicular to both lines, we may use

 $\textbf{n}=\textbf{a}_1\times\textbf{a}_2$

• $a_1 = (2, 1, 3)$ is a vector parallel to the first line, and • $a_2 = (1, -1, 0)$ is a vector parallel to the second line

Distance Problems

Example 9. Distance between two skew lines

Find the distance between the two skew lines

$$I_1(t) = t(2,1,3) + (0,5,-1)$$
 and $I_2(t) = t(1,-1,0) + (-1,2,0)$

- $\mathbf{n} = \mathbf{a}_1 \times \mathbf{a}_2$
 - $\mathbf{a}_1 = (2, 1, 3)$ is a vector parallel to the first line, and
 - $\mathbf{a}_2 = (1, -1, 0)$ is parallel to the second line

$$\mathbf{n} = \mathbf{a}_1 \times \mathbf{a}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{vmatrix} = 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$$

Distance Problems

Example 9. Distance between two skew lines

Find the distance between the two skew lines

$$I_1(t) = t(2,1,3) + (0,5,-1)$$
 and $I_2(t) = t(1,-1,0) + (-1,2,0)$

Distance Problems

Example 9. Distance between two skew lines

Find the distance between the two skew lines

 $I_1(t) = t(2,1,3) + (0,5,-1)$ and $I_2(t) = t(1,-1,0) + (-1,2,0)$

